bioalpha.singlecell.tools.louvain
- bioalpha.singlecell.tools.louvain(adata: AnnData, resolution: float = 1.0, restrict_to: Tuple[str, Sequence[str]] | None = None, random_state: None | int | RandomState = 0, key_added: str = 'louvain', adjacency: spmatrix | None = None, flavor: Literal['alpha', 'vtraag', 'igraph', 'rapids'] = 'alpha', directed: bool = True, use_weights: bool = False, partition_type: Literal['rb', 'cpm', 'rber'] = 'rb', neighbors_key: str | None = None, obsp: str | None = None, copy: bool = False, **kwargs) AnnData | None
Cluster cells into subgroups.
Cluster cells using the Louvain-alpha algorithm, an improved version of the Louvain algorithm. This requires having ran
pp.neighborsorpp.bbknnfirst.- Parameters:
adata (
AnnData) – The annotated data matrix of shapen_obsxn_vars. Rows correspond to cells and columns to genes.resolution (
float, default =1.0) – A parameter value controlling the coarseness of the clustering. Higher values lead to more clusters. Set toNoneif overridingpartition_typeto one that doesn’t accept aresolution_parameter.restrict_to (Optional[Tuple[
str, Sequence[str]]], default =None) – Restrict the clustering to the categories within the key for sample annotation, tuple needs to contain(obs_key, list_of_categories).random_state (Optional[Union[
int,RandomState]], default =0) – Change the initialization of the optimization.key_added (
str, default ="louvain") –adata.obskey under which to add the cluster labels.adjacency (Optional[
spmatrix], default =None) – Sparse adjacency matrix of the graph, defaults to neighborsconnectivities.flavor (Literal[
"alpha","vtraag","igraph","rapids"], default = “alpha”) – Choose between to packages for computing the clustering."alpha"is much the default.directed (
bool, default =True) – Interpret theadjacencymatrix as directed graph?use_weights (
bool, default =False) – Use weights from knn graph.partition_type (Optional[str], default =
rb) – Type of partition to use. (rb,cpm,rber) Only a valid argument ifflavoris"alpha"or"vtraag".neighbors_key (Optional[
str], default =None) – Use neighbors connectivities as adjacency. If not specified, louvain looks.obsp["connectivities"]for connectivities (default storage place forpp.neighbors). If specified, louvain looks.obsp[.uns[neighbors_key]["connectivities_key"]]for connectivities.obsp (Optional[
str], default =None) – Use.obsp[obsp]as adjacency. You can’t specify bothobspandneighbors_keyat the same time.copy (
bool, default =False) – Whether to copyadataor modify it inplace.kwargs (
dict) – Any further arguments to pass to_sctools.clustering.louvain(which in turn passes arguments to thepartition_type).
- Returns:
adata – If
copy=Trueit returns or else adds fields toadata:.obs[
key_added] Array of dim (number of samples) that stores the subgroup id ("0","1", …) for each cell..uns[
key_added]["params"] A dict with the values for the parametersresolution,random_state, andn_iterations..uns[
key_added]["modularity"] The modularity score of Louvain-alpha algorithm. Only ifflavor="alpha"
- Return type:
AnnData